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We present a general collapsing technique for the generation of a regular lexicographically 
ordered grid within a three-chmensional object by using multilinear algebraic coordinate 
transformations. The method is applied to the grid generation of a topologically complex 
region consisting of various three-dimensional objects. The local lexicographically ordered 
object grid is transformed, with an appropriate assembling procedure. into a global 
lexicographically ordered region grid. The method presented possesses simplicity and at the 
same time a sufficient degree of generality, a considerable amount of grid control, and a 
desirable degree of global grid uniformity to make it competitive. b 1956 Academic Press, Inc. 

Automatic grid generation is an important element in the numerical solution of 
partial differential equations with geometric complexity. Because of their inherent 
simplicity and control properties algebraic coordinate transformations have attrac- 
ted the attention of many researchers who have used them for multidimensional 

*This work was supported through Project MIDAS at the Aldridge Laboratory of Applied 
Geophysics, Columbia University. 

+ Present address: Centro de CBlculo Cientifico, Comisi6n National de Pnergia Atbmica, 1429 Buenos 
Aires, Argentina. 

180 
0021-9991,/86 $3.00 
Copyright ,CI 1986 by Academic Press, Inc. 
All rights of reproduction m any form reserved. 



THREE-DIMENSIONAL ALGEBRAIC GRID GENERATION ix1 

grid generation (see: for instance, Cook [ 1, 21. Gordon and Hall [3]. and 
Eiseman [4], among others). 

Here we introduce the method of collapsed algebraic transformations. which 
generalizes the algebraic grid generation. We construct an automatic grid generator 
for a topologically complex three-dimensional region. This generator is intended for 
use in finite element analysis of realistic geological configurations. 

In a grid generation the desired properties to be obtained are a considerable 
amount of grid control and a desirable degree of global grid uniformity. In addition 
to these properties the method should have a sufficient degree of generality for deal- 
ing with various three-dimensional objects while keeping the simplicity of regular 
lexicographically’ ordered grids. 

The outline of our discussion, which is based on a previous report by Marshall. 
Eiseman, and Kuo [S], is: first we introduce the method of algebraic coordinate 
generation for single geometrical objects such as the straight line, the quadrilateral. 
and the hexahedron, and we discuss some examples showing the assembling 
procedure and the topological description of the lexicographically ordered grid 
generated; second we introduce the collapsing technique for single geometrical 
objects such as the triangle, pentahedra, and tetrahedra with examples; finally we 
present an application for the discretization of a topologically complex three-dimec- 
sional region describing realistic geological configurations. 

ALGEBRAIC COORDINATE TRANSFORMATIONS 

It is convenient for computational purposes to describe geometrical objects in 
parametric form. For instance if the Cartesian coordinates s. y, and z are expressed 
as linear functions of a parameter t, i.e., X= x(t). J’= I,, and z =r(i). the 
equations of the straight line passing through the points P,(s, J, Z) and P,(x, J’. ~‘1 
is given by 

where bold capitals indicate vectors and where the parameter t lies between zero 
and one. In parametric form, the Cartesian components are given by 

x(t) = x, + t(x2 - Xl) (2) 

y(t) = .1’1 + f( 1’2 - iPI I (3) 

z(t) = z, + t(z2 - z! j. (41 

Now given the points P,(.x, J, 2) and P,(x, j’- P), a discrete and uniformiy dis- 

’ The most natural and common way to assign memory space for a table is to store the table foilowing 
the “lexicographic order” of its indexes; for a rectangular matrix a(i, j) of order II it means: a( I. I I...~, 
~(1, n), ~(2, 1) ,..., ~(2, n), . . . . a(n, 1) ,.._, u(tt,nj. 
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FIG. 1. A quadrilateral region in the plane. 

tributed set of points Pi(xi, J’~, zi) is to be generated on the straight line passing 
through P, and P’. This construction is carried out with the discrete forms of 
Eqs. (2 j, (3 ), and (4), which are 

x(k) = I, + t/Jx, -.Y,) i5) 
Y(k) = f’l + lk( J’: - J’I I (6) 
z(k) = -71+ t,(z, -zl), i7) 

where tk= (k- 1)/(/1,- 1) as k varies from 1 to a total number of points y1[, 

FIG. 2. Algebraic generation for the quadrilateral of Fig. 1. 
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FOG. 3. A hevahedron region. 

including P, and P1. The construction just described is the simplest example of 
algebraic coordinate generation between two points. 

For planar regions determined by four points. for example, a quadrilateral, the 
simplest construction is for a grid inside and on the boundaries of a quadrilateral 
determined by joining the points Pi (i= 1,4) of coordinates (si, yi) with straight 
lines..as illustrated in Fig. 1. In the same manner we use the parametric form of the 
straight line passing through the points P, and P,, and P, and P,, respectively. 
Using vector rather than component notation, they are given by 

L,,(t) = P, + t(Pz - P,) 

L,,( t) = P, + tt P, - Pj) 

FIG. 4. Algebraic generation for the hexahedron of Fig. 3. 
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FIG. 5. Local element coordinates (Icft) and global region coordinates (right). 

employing the same parametrization for both lines. Then with a parameter r vary- 
ing from zero to one, the quadrilateral patch is analytically given in the form 

L,234(1.> r) = L12(f) + fmdt) - Mt)l. (10) 

Equation (10) is known as the bilinear patch of the four points. Any point inside or 
on the quadrilateral is uniquely defined by the value of the parameters r and t. The 
two-dimensional grid generation inside and on the boundaries of the quadrilateral 
is constructed by the discrete form of Eq. (lo), 

Lm,(~p lk) = L,,(t,) + gL&) - LIZ(t (11) 
where also rj = (j- l)/(n, - 1) as j varies from one to rz,.. With Eq. (1 l), a two- 
dimensional quadrilateral grid is displayed in Fig. 2, where 12, = 17 and n, = 15. 

In continuation from a quadrilateral to a hexahedron region, this is defined by 

/ / 
-k 2 3 

FIG. 6. Lexicographically ordered algebraic grid generation. 
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FIG. 7. Global node numbering for element 1 

eight points: P, ) P, ,.... P,. as illustrated in Fig. 3. With Eq. (IO) and with a similar 
expression for the opposite face, 

the unit cube in (s, I’, t) is mapped into the general hexahedron by 

The grid is given by the discrete form of I$. (13)~ 

Lcube(sj, r,, bJ=L,,,,(ri, tk)+3i[Lj67X(t;. tkj-L,21(ri, tk)], (14) 

where we use si = (i - l)/(n, - 1 j for i = 1, 2,..., n, along with similar definitions for ri 
and t,. Shown in Fig. 4 is a perspective view of a three-dimensional grid for the 
hexahedron of Fig. 3 obtained with Eq. (14). For visual simplicity the same number 
of nodes have been used in the three directions (II? = II, = PI, = 3 ). 

For finite element analysis, it is necessary to perform a topological description of 
the grid generated. This permits the recovery from the algebraic coordinate 
generation of the subset of coordinates belonging to the nodes of a single cell, In 
finite element analysis this cell is called an element and the relation between an 
element and its nodes, nodal-element connectivity. In the implementation of the 
computational algorithm. the topological description of the grid is accompiished 
through the construction of a two-dimensional array. This array contains the global 
node ordering; its first subindex indicates the element number, and the second the 

IV+NR*NT+NT iViNRtNT+NT+I 

IV I”+, 

FIG. 8. Example of nodeeelement connectivity. 
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local node number. Clearly this array relates global and local ordering, which is 
done following lexicographic ordering as illustrated in Fig. 5. The algebraic coor- 
dinate generation produces a lexicographically ordered grid automatically. This 
property of the method notably simplifies the element numbering. 

An example illustrates the matter. Consider a cubic region in which an algebraic 
grid generation has been performed as shown in Fig. 6. The global node ordering is 
done in lexicographic order (left to right in the k direction, onwards in the j direc- 
tion, and from bottom to top in the i direction). The numbers encircled indicate 
element numbers. The total number of nodes is n, * n, * n, = 27 and the total num- 
ber of elements (n, - 1) * (n,- 1 j * (n,- 1) = 8. For instance, the element 1 
illustrated in Fig. 7 has the global node ordering 1, 2, 4, 5, 10, 11, 13, and 14, which 
corresponds to the local ordering 1 , 2, 3, 4, 5, 6, 7, and 8. The face having the nodes 
10, 11, 13, and 14 is the top face and that with nodes 1, 2, 4, and 5 is the bottom 
face. It is easily seen that, if we call the bottom left node of the bottom face IV, for a 
generic element e (see Fig. 8 j, the remaining nodes have the generic values shown in 
the figure. In lexicographic order the first node encountered is node IV, and its 
position is given by IV = k + II, * (j- 1) + n, * II, * (i - 1). Therefore, once a global 
element number e is associated to node IV, the remaining seven nodes belonging to 
that element can be easily obtained from node IV as indicated in Fig. 8. 

COLLAPSING TECHNIQUES 

We introduce the collapsing technique, which generalizes the application of the 
algebraic coordinate generation. This is a reduction procedure by which a 
geometrical object is transformed into a different shape. For instance a 
quadrilateral can be reduced to a triangle if one of its vertices is collapsed into the 
midpoint of the diagonal determined by the adjacent vertices. This is illustrated in 
Fig. 9, where the triangle PI P2P, has been obtained from the quadrilateral 
P, P2 P3 P, of Fig. 1. The point P, is called a pseudopoint because it serves for the 
definition of the pseudoquadrilateral; its coordinates are given by 

P, = 0.5(P, + P3). (15) 

We can now define the equations of the straight line joining the points P, P, and 
P, P,, respectively, by 

L,,(t) = p, + f(PZ -P,) (16) 

LJ4(t) = P, + f(Pl - P, j. 07) 
Then, with a parameter Y varying from 0 to 1, the pseudoquadrilateral or triangle 
patch is analytically given in the form 

Ld-, d = Lifj + 4Ldu - L,,im. (18) 
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FIG. 9. The triangular region 

The grid is given by the discrete form 

L,,,4(rj> tk)=Lll(fli)+Y,[L31(f~)-L,zllk)1, (15) 

where ‘; and t, have been previously defined. Figure 10 shows a computer 
generated two-dimensional grid for the triangle of Fig. 9 (n, = n, = 5 1. 

It is clear from the previous construction that the pseudopoint is a singular point. 
If the pseudopoint is not counted as a regular point, a nonuniform coordinate dis- 
tribution on the pseudopoint side is obtained. However, if it is counted as a regular 
point, a uniform distribution is obtained provided that the distribution on the 
remaining sides is equal. Sometimes it might be necessary to use unequal dis- 

FIG. 10. A collapsed algebraic grid generation for the triangle of Fig. 9. 
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FIG. Il. Nonuniform distribution on the fake point side 

tribution of points in two of the sides of a triangle and therefore, uniform dis- 
tribution in the pseudopoint side is lost. Consider the triangle of Fig. 11, which has 
been discretized with n, = 4 and ~1, = 3, and with the fake point at the midpoint of 
side P, P,. This results in a nonuniform distribution along the side P, P, as shown 
in the figure. For obtaining uniform distribution the fake point has to be located in 
such a way that all the cells are equal in size. Thus, noticing that the total number 
of cells in the side P, P, should be (n, - 1) + (n, - l), the cell size must be 

delta = l/(rz, - 1 + n, - l), W? 

where we assumed the distance from P, to Pz to be unity. Thus the pseudopoint P, 
can be obtained with the expression 

P,= [l -(n,- 1) delta] P, +(rr,- l)deltaP?. (21) 

In Fig. 12, we carry out the above construction for the example of Fig. 11. For 
n,=4 and n,= 3, delta= +. Supposing side P, P, horizontal we obtain 
x~=$xx++x2. Let X, = 0 and x2 = 1 (for example); then x4 = f as indicated in 
Fig. 12. 

FIG. 12. Uniform distribution on the fake point side. 
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In continuation from a triangle to a pentahedron with triangular basis, this 
object can be easily constructed from the hexahedron by collapsing one of the edges 
into the plane joining the two adjacent edges. Once this simple procedure has been 
carried out, the grid generation for the hexahedron carries over for the pen- 
tahedron. For example, if in the hexahedron of Fig. 3, the edge P,B, is collapsed 
into the plane passing through the edges P,P, and P7P6, respectively, such that 

P* = 0.5(P, + P7) 

P, = 0.5(P2 + P3)? 

(22) 

(23) 

a pentahedron is obtained. Figure 13 shows a perspective view of a computer 
generated three-dimensional grid using the technique just described 
(n,=lz,= II,= 3). We note that the collapsing procedure produces a pseudoline 
(PAP,) which now is visible in the plotting. 

Now we consider the pyramid grid generation obtained from the hexahedron of 
Fig. 3, for instance, by the following sequence of collapsing procedure (irrelevant of 
their order): (a) collapsing of the edge P,P, into the plane joming the two adjacent 
edges; and (b) collapsing of the point P, into P,. such that Eqs. (22) and (23) are 
satisfied together with 

Pj=P,. (24) 

In Fig. 14 we present a perspective view of a computer generated three-dimensional 
grid of a pyramid using these techniques (n, = 12, = II, = 3). 

One alternative for obtaining a tetrahedron starts from the cube of Fig. 3 and 
follows the sequence of collapsing procedures: (a) collapsing of the point P, into 

FIG. 13. A collapsed grid algebraic generation for a pentahedron with triangular basis 
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FIG. 14. A collapsed algebraic grid generation for a pyramid showing in thick lines one of the 
elements. 

P,; (b) collapsing of the edge P, P, into the plane passing through the edge P,P, 
and the point P,; and (c) collapsing of the point P, into P,, such that Eqs. (22), 
(23), and (24) are satisfied together with 

P,=Pz. (25) 

In Fig. 15a we present a computer generated three-dimensional grid of a 
tetrahedron with 11, = n, = n, = 3. 

A second alternative for obtaining a tetrahedron starting from the cube of Fig. 3 
is to collapse, for instance, the points P2, P,, and P, into the lines determined by 
P, P,, P, P,, and P4 P,, respectively, as shown in Fig. 15b. The collapsing is done 
according to the formulae 

P,=P,+u(P,-P,) (26) 

ps=p,+m-PI) (27) 

p, = p, + Y(P7 - Pa), W? 

where O<a, /I, 1’<1. 
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FIG. 15(a J A collapsed algebraic grid generation for a tetrahedron showing in thick lines one of tkr 
elements. (b) Second alternative for obtaining a tetrahedron from the cube of Fig. 3. 

Next the point P, is collapsed into the barycenter of the dotted triangle formed 
by the pseudonodes P,, P5, and P, according to 

P, = i(P? + P, + P,). i29) 

For the particular case in which a = fl =I = f, P, becomes the barycenter of the 
triangle formed by PI, P,, and PT. i.e., 

P, = i(P, + P, + P7). (30) 

In the event that there is unequal distribution of mesh points in any of the three 
parametric coordinates, and in order to obtain uniform distribution in the triangle 
P, P,P7, the location of the points on which to collapse the hexahedron can be 
determinated following the same technique as in the case of the triangle in the 
plane. Uniform distribution is then the main advantage of this second alternative in 
relation to the former. 

The collapsing technique discussed above permits a grid generation with 
regularly lexicographic ordering. Hence, the procedure for the topological dcscrip- 
tion of the grid, which was discussed in the previous section. can be readily exten- 
ded to the objects studied in this section. 

APPLICATION TO A TOPOLOGICALLY COMPLEX REGION 

We present an application of the method of collapsed algebraic transformations 
to the discretization of a three-dimensional topologically complex region, i.e.. a 
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FIG. 16. A complex region. 

region composed of an arbitrary number of three-dimensional objects. The final 
objective is the development of a method for an automatic grid generation in finite 
element analysis of realistic geological configurations. Suppose that a region R of a 
three-dimensional space is given by the unit cube and that this region is composed 
of four objects (four smaller cubes), each one having different physical properties 
(see Fig. 16). The four objects fill the space of the region R completely. The bound- 
aries of each object are given as data. The problem consists in discretizing the four 
objects with a three-dimensional grid in such a way that the number of nodal points 
at the common interface between objects is matched. Once the grid generation for 
each object has been obtained independently, using the techniques of previous sec- 
tions, a global assembling of all the object grids must be performed, after which the 
nodal-element connectivity and the element-object connectivity can be determined. 

Before commencing the description of the procedure employed we enumerate the 
restrictions of the method proposed: (a) all the objects must be hexahedra, and (b) 
all the objects must have common edges. 

Any object that is not a hexahedron (and has fewer than six faces) can be trans- 
formed into a hexahedron (or pseudohexahedron) by the manual addition of the 
appropriate geometrical components. Any object not having common edges with its 
neighbors can be brought into it by proper manual subdivision. Examples: (i) The 
region represented in Fig. 17 contains objects that fail to satisfy condition (b). This 
is true because the edge AB common to R, and R2 and belonging to the bottom 

FIG. 17. A complex region not satisfying condition (b). 
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Frc;. 18. A complex region not satisfying condition (6 i. 

face of R, transforms the object R, into a figure with seven faces (the maximum 
number of faces recognized by the implementation of the method is six). Con- 
dition (b) can easily be satisfied if the object Rj is in turn subdivided in two by the 
addition of a vertical plane containing the edge AB (for instance). (ii) The region 
represented in Fig. 18 contains objects that fail to satisfy condition (a). This is true 
because R, has only five faces and therefore is not a hexahedron. To fix this 
problem we add an extra edge (pseudoedge) parallel to the common edge between 
the two objects, thereby creating the sixth pseudoface needed in R2 (note: we can- 
not add a pseudoface to R2 in the common plane between R1 and’R2 since this will 
fix condition (a) in R, but make R, fails to satisfy condition (b). 

The foregoing considerations show that a manual preprocessing of the data is 
necessary before entering into the grid generation procedure. By now it is clear that 
the manual preprocessing is nothing else than a generalization of the collapsing 
technique previously discussed. 

The new feature of this section is the appearance of a region composed of an 
arbitrary number of objects. For computational purposes it is assumed that these 
objects are ordered in lexicographic order. Therefore, once the grid generation is 
performed on a given object, the nodes of that object are ordered in a local (for that 
particular object) lexicographic order, which means that at the common interface 
between two objects the same node has different numbering. For finite element 
calculations it is necessary to have a global system numbering for the region in 
which every node is uniquely defined. To satisfy this requirement an appropriate 
assembling procedure is performed in which the local object lexicographically 
ordered grid is transformed into a global region lexicographically ordered grid. This 
is done through matrix manipulations assuming that the relative position of the 
objects inside the region is known; the three-dimensional array containing the coor- 
dinates of the nodes of a particular object grid is loaded into a global array in such 
a way that its relative position inside the region is preserved. Once this assembling 
procedure is done for all the objects we can easily recover the nodeelement con- 
nectivity using the same technique as for the case of a single object. 

In order to recover the element-object connectivity a flag is assigned to each 
nodal point at the object level. The local object three-dimensional arrays containing 
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FIG. 19. Primitive region. 

these flags are treated in the same fashion as the nodal points: i.e., they are assem- 
bled into a global region array from which the element-object connectivity is 
readily obtained. 

We illustrate the method of collapsed algebraic transformations with some exam- 
ples. Suppose that the region to be discretized is composed of three objects as 
depicted in Fig. 19. Here again we need to perform a manual preprocessing of the 
primitive objects in order to satisfy the restrictions imposed by the present 
implementation of the method. This is done in Fig. 20, where the dotted lines show 
the new geometrical components introduced: a subdivision of the object R, in two 
and the transformation of R, into a hexahedron by the addition of the pseudoedge 
2-11 (note that the object node data ordering is arbitrary). In Figs. 21 and 22 we 
present the computed results obtained with the present method. Figure 21 shows a 
perspective view of the primitive region (with the preprocessing included) and 
Fig. 22 shows a perspective view of the grid generated (n, = II, = n, = 3 ). 

Finally, suppose that the primitive region shown in Fig. 23 has to be discretized. 

16 17 18 

-.-.-.-. 
Hand ~re~roc?ss 

1 283 

FIG. 20. Manual preprocessing of the region of Fig. 19. 
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FIG. 71. Computed perspective view of the region of Fig. ?O. 

This figure pretends to represent a realistic geological configuration. The 
preprocessing of this problem consists, for instance. in a subdivision of Rz by the 
addition of a new object (extension of R, into fiz) and the addition of a pseudoedge 
at the bottom of RI. The result is shown in Fig. 24 (note again that the object node 
data ordering is arbitrary and takes advantage of the previous figure). In Figs. 25 
and 26 we present the computed results. Figune 25 depicts a perspective view of the 
primitive region (preprocessing included) and Fig. 26 shows a perspective view of 
the grid generated (n, = ~2, = n, = 3). 

FIG. 21. A collapsed algebraic grid generation for the region of Fig. 31 showing in thick lines t5e 
four elements into which the back half of the top right aorner object is subdivided. 
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FIG. 23. An example of a geophysical region configuration. 

16 17 

-.-.-. 
Hand preproc. 

FIG. 24. Manual preprocessing of the region of Fig. 23. 

FIG. 25. Computed perspective view of the region of Fig. 24. 
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Cc. 26. A collapsed algebraic grid generation for the region of Fig. 25 showing in thick lines the 
four elements into which the front half of the bottom right corner object is subdivided. 

From the description of the method and from the computed results it is clear that 
the grid uniformity is a direct consequence of the size uniformity of the objects. 
Therefore, to achieve this property it is necessary. when the objects are quite dif- 
ferent in size, to perform an educated manual partition of the larger objects. 
Obviously, partition can also be used to work in the opposite direction, that is. to 
induce a grid densification on a particular object or in a part of it. This partition 
should not be confused with the manual preprocessing, a term that here is 
associated with the collapsing technique. 

We would like to make a final comment on the collapsed algebraic transfor- 
mations method and its use in finite element analysis. In the majority of standard 
finite element programs it is necessary to know beforehand the type of element and 
basis function to be used. This information is not directly provided by the collapsed 
algebraic transformations method. C.learly, in the element generated by this 
method, only data on its eight coordinate nodes are given, regardless of the 
geometric object represented. To overcome this difficulty one alternative is to per- 
form a scanning of every element of the mesh generated, but this may be extremebj 
time consuming. Another alternative is to construct general basis functions which 
do not require that information (this has been implemented in Marshall ei ul. [4]; 
see also Irons [7] for more details of this topic). 
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CONCLUSIONS 

General collapsing techniques have been developed to generate regular 
lexicographically ordered grids within irregular objects by using algebraically 
defined transformations in both two and three dimensions. In two dimensions the 
collapsed objects are just triangles; in three dimensions, they comprise pyramids. 
tetrahedra, and prisms. In either dimension a uniform distribution of mesh cells is 
obtained by using the chosen number of mesh points in each direction as basic data 
to determine the locations on which to collapse the general pseudoquadrilateral or 
pseudohexahedron into the particular object. 

While the basic technique is presented in terms of simple multilinear coordinate 
transformations, the results can be extended to more general algebraic transfor- 
mations. Moreover, the established pattern in two and three dimensions can also be 
continued into even higher dimensions. 

On application, the various objects are assembled to form a global discretization 
of a topologically complex region. The local lexicographically ordered object grid 
must then be appropriately matched at junctures with other object grids. A 
corresponding mesh numbering scheme was then suggested in order to increase the 
efficiency for applications. 

The utilization of collapsed algebraic transformations allows a sufficient degree of 
generality to deal with various three-dimensional objects while maintaining a con- 
siderable amount of grid control. An educated manual partition of the objects per- 
mits a desirable degree of grid uniformity for the region. The numerical examples 
presented evidence of the simplicity, robustness, and efficiency of the method 
advocated. 
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